Stéphane and me next to the QCL (quantum cascade laser) instrument on board the Atmospheric Research Aircraft.

Stéphane and me next to the QCL (quantum cascade laser) instrument, which measures methane and nitrous oxide, on board the Atmospheric Research Aircraft. It really is a lab in the sky! Photo by Sue Nelson of Boffin Media.

A couple of weeks ago, I received an email, asking if I could take part in recording a Planet Earth podcast, with one of my colleagues (Planet Earth is the Natural Environment Research Council’s magazine). Of course I immediately agreed, as the MAMM team love sharing their work with the world!

So, a few Mondays ago, I went over to Cranfield, where the Atmospheric Research Aircraft is based when it’s not on field campaigns, to meet with Stéphane Bauguitte, one of the MAMM team who runs the fast greenhouse gas analyser and is a flight manager (amongst other things), and Sue Nelson, who was interviewing us and recording the podcast.

It was lucky that the aircraft was not only in the hangar and not out flying, but the instruments we use to measure the methane in the air were still on board. Many other projects don’t need to measure the methane, so the engineers remove the unnecessary kit, and replace it with other instruments to measure different things in the atmosphere.

We had a great time showing Sue the aircraft — I think she was suitably impressed by its size! Listen to the podcast to find out just how noisy it is on board, and to find out about our exploits in the Arctic.


The aircraft at home in the hangar at Cranfield. Photo by Sue Nelson of Boffin Media.

The aircraft at home in the hangar at Cranfield. Photo by Sue Nelson of Boffin Media.

Open access logo

Open access

There are currently a couple of papers from the MAMM project under open review. This means that anyone can access them, and anyone can review then and post their comments! Once the review process is over, if any issues are addressed and the official reviewers are happy, the papers are published fully. They are still free to access, although there are no comments on the final papers.

Check them out (and review them if you like!) here:

O’Shea, S. J., Allen, G., Gallagher, M. W., Bower, K., Illingworth, S. M., Muller, J. B. A., Jones, B., Percival, C. J., Bauguitte, S. J-B., Cain, M., Warwick, N., Quiquet, A., Skiba, U., Drewer, J., Dinsmore, K., Nisbet, E. G., Lowry, D., Fisher, R. E., France, J. L., Aurela, M., Lohila, A., Hayman, G., George, C., Clark, D., Manning, A. J., Friend, A. D., and Pyle, J.: Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012, Atmos. Chem. Phys. Discuss., 14, 8455-8494, doi:10.5194/acpd-14-8455-2014, 2014.

Allen, G., Illingworth, S. M., O’Shea, S. J., Newman, S., Vance, A., Bauguitte, S. J.-B., Marenco, F., Kent, J., Bower, K., Gallagher, M. W., Muller, J., Percival, C. J., Harlow, C., Lee, J., and Taylor, J. P.: Atmospheric composition and thermodynamic retrievals from the ARIES airborne TIR-FTS system – Part 2: Validation and results from aircraft campaigns, Atmos. Meas. Tech. Discuss., 7, 3397-3441, doi:10.5194/amtd-7-3397-2014, 2014.


In preparation for our events at the Cambridge Science Festival next week, here are all the MAMM project podcasts from our time in the Arctic! You can click through to the original podcast page to listen. Enjoy!

(And if you are in Cambridge, then sign up for one of our events on Wed 19th March 2014, as there are still some tickets left: for 12-18 year olds and for 18+.)

Sam is recording a podcast with Dave in the car on a very rainy Sunday, on our way to collect samples in the birch woodland. (Photo "credit": Michelle Cain.)

Sam is recording a podcast with Dave in the car on a very rainy Sunday, on our way to collect samples in the birch woodland. (Photo “credit”: Michelle Cain.)

An Introduction to MAMM:
In this introductory episode, Jen and Sam give a quick overview of the MAMM project, and what their individual roles are during the upcoming campaign, as well as laying out some of their hopes and aspirations for what promises to be a very exciting expedition!

Putting the Modelling into MAMM:
Sam is joined by Michelle, from the University of Cambridge, fresh off a plane at Stockholm airport, en route to Kiruna. We catch up with her to get her take on the challenges ahead, and what it means to be one of the Ms in MAMM.

MAMM day 1:
This episode discusses some of the first preliminary measurements that have been made by the FAAM Atmospheric Research Aircraft (ARA) during the MAMM campaign, as well as why it was probably a good job that Sam flew commercial.

MAMM Day 2: Sitting up Front and the Kelvin Helmholtz instability:
Sam catches up with Jen and Grant about the latest results from day 2 of the MAMM flight campaign, with Grant giving added insight into life a as Mission Scientist #1 and the search for the Kelvin Helmholtz instability from the cockpit.

MAMM Day 3: Principal Investigators and Long Range Transport:
In this episode, Sam catches up with Professor John Pyle from the University of Cambridge, the PI (Principal Investigator) for the MAMM project, and finds out in a bit more detail about the principal aims of the flying phase of the campaign.

MAMM Day 4: Boxes over Sodankylä and the Sky Arrow:
Sam and Jen meet to discuss some of the results of the fourth (and final) day of the MAMM flying campaign in the Arctic.

Reflections on the August MAMM campaign:
Back in Manchester, Will chats with Sam and Jennifer who reflect on the recent flying in the Arctic for the MAMM project. Listen to find out whether luck was with them, or whether they made their own luck in August and what the outlook is for the September campaign where they will be flying even further North than the wetlands in the European Arctic.

MAMM September 2013 Intro:
Sam and Jen broadcast live from several thousand feet above sea level to bring you an introduction to the September flying missions of the MAMM campaign, talking about why they are returning to the Arctic circle, and about the importance of making in situ measurements of methane. Sartorial concerns are also addressed as the necessities of thermal underwear are discussed.

MAMM Operations: Fly direct with Directflight:
Doing research using the aircraft takes a lot more than just the scientists doing good science: the ground operations team plays a crucial role.

MAMM: Fingerprinting Methane:
James explains his role, from collecting bags of air on the aircraft in order to ‘fingerprint’ the different sources of methane, to driving around Scandinavia and making measurements from the ground.

MAMM Road Trip: Measuring in the Rain:
As James drives in the treacherous conditions, Dave talks to Sam about the importance of these measurements, how chambers are used this process, and why it is absolutely essential that they make them in conditions such as this, which are atypical of Lapland at this time of year.

MAMM Flying: Aircraft love:
This episode is all about the people who keep the FAAM BAe-146 atmospheric research aircraft, her core instruments and scientists in top condition.

MAMM: Close-up look at the wetlands:
This episode is all about the different “scales” of methane measurements made during MAMM.

MAMM September 2013 Wrap Up:
As the September flying campaign draws to an end, we reflect on what has been a rather successful project to date, and also talk about the next steps for MAMM.

The research aircraft flying over wetlands in Finland in July 2012.

The research aircraft flying low over wetlands in Finland in July 2012.

The ARA flying over Spitsbergen for MAMM in 2012.

Find out what it’s like to be a scientist of a research flight, like this one!

Regular readers will have a fair idea of the trials and tribulations of the MAMM field work team. Now, we’re going one step further by putting on a show for people to really find out what we get up to. 

The show is called “The Arctic science experience”, and will be put on twice at the Cambridge Science Festival on Wednesday 19th March. A full crew, including scientists, the pilot, cabin crew and the flight manager will be there, enacting a typical MAMM research flight over the Arctic wetlands. You’ll get to see a life-sized replica section of our aircraft, fitted with an instrument that measures methane. You’ll get to see what the scientists on the ground get up to, taking samples of what’s coming out of the bogs. Best of all, you’ll get to be part of the team, as one of the “mission scientists” who are consulted on decisions during the flight.

You can book (all tickets are free) for the 4pm showing (aimed at 12-18 year olds) here:

or the 6pm showing (18+ as there will be wine available):

Be sure to book if you wish to attend, as it’s going to be a sell out! If you can’t make it, look out for tweets by @civiltalker, @jenniferbmuller, @samillingworth@camscience, @NERCscience, as we will be tweeting pics on the day. Hopefully, we will meet some of you in a few weeks!

Find out what it's like to be on board the research aircraft

Find out what it’s like to be on board the research aircraft

Sam’s latest foray in to communicating his science has taken the form of performance poetry. This is not a medium we can all master, so his video is really worth a watch! See it here:

It’s an example entry for the “Communicate Your Science Video Competition”, so if you are an Earth scientist, you can enter too. No obligation to do poetry — you can make any kind of video you like. And if you’re not a geoscientist, then you’ll be able to watch the videos and vote for your favourite in April at:

Presumably Sam’s video won’t be entered into the actual competition, as it’s acting as the example. A real shame, as I’m sure he’d have won with his lyrical genius — I’m clearly not biased in any way, shape or form!

Image/photo courtesy of the National Snow and Ice Data Center, University of Colorado, Boulder.

Gratuitous pretty picture of Arctic sea ice. This has nothing particularly to do with this post, except that you can get methane released into the atmosphere at the edge of sea ice. (Image/photo courtesy of the National Snow and Ice Data Center, University of Colorado, Boulder.)

Sam Illingworth and Garry Hayman from the MAMM team, along with Oksana Tarasova from the World Meteorological Organisation, are convening a session at the European Geosciences Union General Assembly 2014, on the topic of Methane and other greenhouse gases in the Arctic:

The session will cover all the MAMM areas of work, and more! Follow the link for details, and do submit an abstract if this is your area of research. The deadline for abstracts is 16 January 2014, 13:00 CET.

I’m one of the few of the team (or so it feels) who hasn’t gone to the “AGU Fall Meeting”, which is a huge conference in San Francisco, where geoscientists of all kinds go to share and discuss their work. (AGU=American Geophysical Union.)

Luckily for me, there are many virtual options so I’ve been following things remotely. As I’m stuck at home with a cold (I don’t want to infect anyone else with it!), I’ve actually followed the conference much more than I would have done otherwise. And I thought I’d share some of the Arctic methane and MAMM related virtual options with you.


If you check out the hashtag #AGU13 on twitter, you will see the wide range of science that is available at the conference. If you don’t wish to read thousands of tweets, then you will find MAMM’s very own Sam Illingworth tweeting from the conference. He even managed to live-tweet his own talk yesterday. How’s that for communication skills, talking and tweeting at once?!


Sam is also podcasting with his colleagues on the Barometer Podcast. You can catch up on the past 4 days of the conference in one fell swoop.

Official AGU Virtual Options

AGU have an impressive range of virtual options. You can see lots of talks online at once you register. There are live channels, which show some sessions as they are happening. However, I have not managed to get a decent connection to these, and have had to frustratedly abandon trying. Luckily, all the live channels, as well as some other sessions, are being put online afterwards, so they can be watched on demand. So that would be my recommendation. You can also see the AGU Fall Meeting Buzz, which somehow collates a selection of tweets about the meeting. That’s got to be an epic task for anyone!

I have just watched an excellent talk by Euan Nisbet, one of the MAMM team. I would highly recommend it as it’s a nice overview of methane in the atmosphere, including the Arctic, the tropics and globally. If you want to know:

  • What are the top 10 most bovine-populated countries?
  • Why did the American Embassy in Beijing tweet that the air was “crazy-bad”?
  • How good/bad shale gas emissions are relative to other forms of gas for the UK?
  • What does it look like when the northern hemisphere visits the southern hemisphere?

then take a look at Euan’s talk! If you can, I’d recommend higher definition so you can read my name in tiny letters next to some of the figures. That sounds like a pretty good game actually — you can play MAMM bingo too, by looking out for the names of team MAMM who feature. I spotted: Michelle Cain (that’s me), James France, Dave Lowry, Rebecca Fisher, Mathias Lanoisellé, Nicola Warwick, Alistair Manning and Andrew Manning (no relation!). I might have missed someone, so post in the comments if I have!

So head on over to Euan’s talk now, and feel free to post comments or questions about it in the comments here. (If the link doesn’t work because you need to register first, the talk is called: U33A-05. Atmospheric Methane In The 21st Century: What Does The Future Hold? (Invited).

–Michelle Cain, University of Cambridge

The ARA flying over Spitsbergen in July 2012. (Photo credit: Michelle Cain.)

The ARA flying over Spitsbergen in July 2012. (Photo credit: Michelle Cain.)

Sunday 22nd September.

We’re off the west coast of Spitsbergen (Svalbard is the territory, Spitsbergen is the biggest island), looking for methane plumes coming from the methane hydrates on the seabed below. They’re here, a couple of hundred metres down – but do they break surface? Rebecca Fisher, today sitting by the window, and Mathias Lanoisellé, who was on last year’s flight, were both on the ship that found the plumes. So now we’re running along the track of the plumes, 150 feet above the waves. But today, as last year, we don’t find any methane that has escaped. It has all dissolved in the water, or been ‘eaten’ by methanotropic bacteria in the sea.

That’s comforting – this is a big gas release going on beneath us, and we know it’s there, but at least it isn’t hitting the atmosphere. The hydrates are being warmed by the West Spitsbergen Current, the top end of the Gulf Stream, which is pouring Gulf of Mexico heat into the Arctic Ocean.

Take off

We took off from Kiruna, sopping wet under low skies. The pilots’ mikes were offline on our headphones, but you could hear the quiet comment  when the BAe 146 rotated and lifted off, climbing up towards the hills towards the Norwegian border.  As we unbuckled the top two straps of the 4-way harness, far below in the murk we would have had the wetlands of Abisko park, where we’d been the previous day, off on our west side. James France and Dave Lowry, having volunteered to do the hard stuff while we fly, would be setting off for another wet day there. Meanwhile ten thousand feet up, we’re given good hot coffee and – surprise – superb chocolates (mystery gift: was it the pilots?).

We’re climbing from 10000 towards 25000 feet now, over the border hills between Sweden and Norway. There’s high methane air here. We don’t know where it comes from, but when she’s back in the office, Michelle will run a meteorological model backwards to find out where the methane came from.

There are three snakes writhing across the screen – one’s methane. Below it is CO2. If they both rise together, it’s likely to be industrial air. But if just methane rises, then the source will be natural wetland or maybe hydrate. Below is the water vapour trace, and in an inset is CO and Ozone. If there’s lots of CO, then the air mass may come from a distant giant forest fire – at 25000 ft this maybe was days or even weeks ago and perhaps far away as eastern Russia, or even North America.

Heading for Zeppelin – or at least a few dozen miles west of Zeppelin

There’s a brief excitement – ozone is climbing. Is this a filament of stratospheric air, a down-hanging tendril from above? They saw one on the transit across from the UK a couple of days ago. The Polar Vortex brings the stratosphere down here: some of this polar stratospheric air rose long ago over the giant thunderstorms of the tropics, in what’s called the Brewer-Dobson circulation. But the ozone soon falls again – maybe it was just a little breath now mixing in with the ambient troposphere, left over from something that took place earlier.

We reach the point of descent, far north of Tromso, and then dive fast to begin a sharp sawtooth pattern – down low, then up, then down again, up, down, up, down, up down. We’re hunting – like a hound going to ground, then lifting to sniff upwards,  seeking out the easterly winds from Siberia. There’s some wind at a few thousand feet that’s rich in methane, and we sample it. Down low, the air is very uniform – some wiggles in the snake, but this is well-mixed polar air. This is very good news for the planet, as it means there are no huge point sources feeding blasts of methane into the winds: at least, not this day.

Then the sawtooth pattern ends. We have just enough fuel for a long run at low level over the west coast of Spitsbergen. This is where the methane plumes are, hundreds of them, in a line along the gas hydrate stability boundary 250 to 400m underwater. We watch the wiggles for a sign of methane emissions. The pilots are watching keenly also: “Two birds to the left… and to the right… less than we saw last time…(an engine ate birds once, which can be indigestible)…shower ahead…

Zeppelin Station, Spitsbergen, a few tems of miles east of our flight track.This mountain-crest station run by NILU (the Norwegian Air research Institute) continuously monitors methane.

Zeppelin Station, Spitsbergen, a few tens of miles east of our flight track. This mountain-crest station run by NILU (the Norwegian Air Research Institute) continuously monitors methane. (Photo credit: Euan Nisbet)

All’s quiet – the wiggles stay calm. Back up to 25000 ft and turn for home. We poor souls who have been on the west side of the aircraft listening to the comments about fantastic visibility finally get a glimpse of the astonishing landscape of Spitsbergen. Dave, Rebecca, James and I have all worked there, at Zeppelin Mountain: it’s marvellous to see the sharp teeth – the Spits-bergen – of the jewel of the North again.

–Professor Euan Nisbet, Royal Holloway University of London

Sunday 22nd September.

It is good to not expect everything to go according to plan.  Last Sunday (22nd September), the plan had been to head up North and fly to Svalbard (~78 °N), land and refuel at Longyearbyen, and then sample and do more science in the Svalbard area, before heading back to Kiruna. But it was not meant to be exactly that way. The wind speed had picked up at Longyearbyen, above the threshold which would make it unsafe for the BAe-146 to take off from there. So the plans were changed in the morning, hours before the flight was supposed to take off, but then even these plans turned out not feasible either, and finally with some resolute decisions by the mission scientists John Pyle and Keith Bower, and with 1¾ hours delay, we left Kiruna. Instead of the two flights we were only going to have a single flight, and still achieve the key objective: sampling air near Svalbard that been transported there from Russia, i.e. sampling long-range transport of methane.

Svalbard in the distance, as the ARA flies off its west coast. (Photo credit: Jennifer Muller)

Svalbard in the distance, as the ARA flies off its west coast. (Photo credit: Jennifer Muller)

As we still needed to go as far north as Svalbard to measure these air masses advected into this part of the Arctic, and get back to Kiruna in one flight, we headed out North at high altitude (because flying low uses more fuel). Before reaching Bear Island, we descended down to lower level at 73 °N, and then surveyed different altitudes by “saw-toothing”. This basically is making the shape of the tooth on a saw, meaning going up and down vertically in the atmosphere; for us this was between 1000 feet and minimum safe altitude, whilst travelling horizontally northwards to Svalbard. Saw-tooths are useful when trying to find the altitude of a particular aerosol and pollutant layer in the atmosphere. The models had forecasted that we would find such a layer south of Svalbard, but the enhancements in methane concentrations we measured were on the smallish side.  Coming up west of Svalbard, we stayed low over the ocean, which was a little choppy, before turning around at 78 °N and heading back at high altitude to Kiruna.

We went up north to measure methane that had been transported there from further east, and we did indeed sample some of that (so, success!) but there was also a whole lot of cloud around on Sunday. And in the way the saying goes “If life gives you lemons, make lemonade”, I would say Sunday was a case of “If life gives you clouds, measure clouds”. Graeme Nott from FAAM ran the core cloud instruments on the flight (i.e. cloud physics measurements, such as e.g. cloud droplet or ice number, size and type) and at some point he had an interesting conversation with Mission 1 Keith Bower over the intercom, all about bullet rosette ice crystals, and out of focus imaged ice crystals which look like donuts on the display.  Always something new to learn!  We also flew through some very wispy, thin ice cloud which was not obvious by looking out of the window, and only Graeme could tell us whether we were in-cloud or out-of-cloud.

Broken up cloud streets - interesting, even to a chemist! (Photo credit: Jennifer Muller)

Broken up cloud streets – interesting, even to a chemist! (Photo credit: Jennifer Muller)

Although my research interests are atmospheric trace gases, such as methane, I couldn’t help to thoroughly enjoy this flight for the myriad of clouds we saw. Yes, sometimes you get what you think you don’t want, and you just have to go with the flow, enjoy and make the best of it. This is also what Stéphane Bauguitte from FAAM did, who creatively used the flight delay in the morning to make and distribute some tongue in cheek “Complimentary drinks vouchers”.  Yet with what we saw and measured, as well as the delicious Swedish cakes, courtesy of the flight deck, there was enough to keep us scientists sweet and happy during this flight.

–Dr Jennifer Muller, University of Manchester

Complimentary drinks voucher, to keep everyone sweet while their flight was delayed by nearly two hours.

Complimentary drinks voucher, to keep everyone sweet while their flight was delayed by nearly two hours.

We’re been a little light (and slow) on the written reports from this field campaign, partly because we’ve been so busy making podcasts! Well, Jennifer and Sam have anyway. So, while you wait for the next instalment of the blog, head over to the Barometer Podcast site, where you’ll find short audio interviews with aircraft engineers, operations staff, scientists, and more…

Sam is recording a podcast with Dave in the car on a very rainy Sunday, on our way to collect samples in the birch woodland. (Photo "credit": Michelle Cain.)

Sam is recording a podcast with Dave in the car on a very rainy Sunday, on our way to collect samples in the birch woodland. (Photo “credit”: Michelle Cain.)


Get every new post delivered to your Inbox.