Archives for the month of: July, 2014

This week in Kiruna, Sweden was my first field trip and first time north of the Arctic Circle. This time of the year there is 24 hour daylight, a stark contrast to the vision I had of Santa Claus’ home – who knew that in Lapland you have to pack sunscreen! It all makes sense if you think about the reason for the field trip, the wetlands, and how as the temperature gets warmer methane is released.

On Monday afternoon I had my first flight, and not only was the science experience great but the view was spectacular!

Wetlands out of the window of my first science flight (Photo: Ines Heimann)

Wetlands out of the window of my first science flight (Photo: Ines Heimann)

We flew two different low East-West legs from Kiruna over the Finnish wetlands (most likely the more brownish areas, see photo). What I did not expect was such a bumpy ride: even with very low winds, 500 ft above ground means lots of little air holes and little bumps! Luckily, one of the science aims was to profile up to higher altitudes, to assess the local atmosphere’s vertical structure.

Inside the aircraft. (Photo: Ines Heimann)

Inside the aircraft. (Photo: Ines Heimann)

Seeing the measurements in real time while flying is definitely a wonderful experience! It took a while to get my first plots working, but afterwards, every little variation I spotted in methane was a highlight. The flight for me was therefore not as “dull” as the Mission Scientist 1 (an old hand at this) called it.

An interesting aspect of the flights was the discussions over the headphones deciding whether to continue the planned flight or to change altitude to get a better idea of concentrations or fluxes.

The flying on Monday was followed by yet another first-time experience: flight planning for Thursday – no mean feat! The office space in a hangar did help to imagine a plane journey!

Inside the hangar, where our office was based. (Photo: Ines Heimann)

Inside the hangar, where our office was based. (Photo: Ines Heimann)

It is only when I helped produce a plan that I realised how much work goes into a successful research flight and a successful measurement campaign. I learned that weather is probably the most important but also variable factor.

Considering the rain, wind and cloud forecast for Thursday, we prepared two different sortie plans, considering timings, distances and the altitudes for the measurements to ensure the fuel would bring us back to Kiruna.

Unfortunately Thursday arrived with a near constant cloud cover making flying at low altitudes impossible due to bad visibility. We tried our luck and found a gap south of Kiruna and managed to fly a quarter of our flight track at the desired altitude of 1000 ft under the clouds. Lucky me, who took an anti-sickness pill before take-off!

A cloudy day for flying over the wetlands. (Photo: Ines Heimann)

A cloudy day for flying over the wetlands. (Photo: Ines Heimann)

The rain arrived soon after the first leg and we ended up profiling up and down the atmosphere searching for different methane layers transported from other regions and sources. Analysis will show whether we got lucky!

In conclusion, this week was full of interesting and fascinating new experiences, and showed me how exciting science can be and how much we depend on our environment!

Ines Heimann (University of Cambridge)

Tuesday 1 to Wednesday 2 July 2014

For the previous 2 days of the MAGIC campaign we have carried out work around Svalbard to look for methane hydrate emissions off the west coast of the archipelago and to test a new inertial navigation system at high latitudes.

On Tuesday we left Kiruna in Northern Sweden at 0900 UTC (which is another way of saying GMT), transiting at high level before descending to 100 ft above sea level to rendezvous with the Norwegian research ship, the RV Helmer Hanssen, currently carrying out a survey of the methane above seabed bubble plumes, and looking for elevated methane in the atmosphere. We flew past the ship twice before heading to Longyearbyen to refuel and prepare for the next sortie of the day.

The second sortie was a 1400 UTC take off heading out to 10°E then to 84°N at 27000 ft. Stratospheric air was encountered at these high latitudes. Following a leg at 84°N across to 20°E and a successful navigation equipment test we headed back to the 10°E line heading for lower altitudes to look for methane emissions above leads (wide cracks) in the Arctic sea ice pack. Our descents to 100 ft were very intermittent due to low cloud cover, but lead development was seen near 81.5°N, and these became more frequent as we flew south. The edge of the ice pack was close to 80.1°N and fragments of ice from the pack were observed to 79.9°N. Methane seemed to increase very slightly after reaching open water but changes were not much above instrument measurement precision.

Ice break-up 81°N (Photo: Dave Lowry)

Ice break-up 81°N (Photo: Dave Lowry)

Melting Ice

Melting ice rafts at 80.5°N (Photo: Dave Lowry)

Edge of sea ice at 80.1°N.(Photo: Dave Lowry)

Edge of sea ice at 80.1°N.(Photo: Dave Lowry)

After debrief we headed to the centre of Longyearbyen. The taxi drivers have plenty of great stories about the town, some not appropriate for print. We stayed in the Radisson hotel, which apparently was transported from Lillehammer after the 1994 winter Olympics. The cloud cover made the town quite gloomy, not helped by the remnants and scars of coal mining on the hillsides, although residential developments do add some colour.

MAGIC leader, John Pyle,  a long way from home.

MAGIC leader, John Pyle, a long way from home.

Midnight cloud and fjord at east edge of Longyearbyen (Photo: Dave Lowry)

Midnight cloud and fjord at east edge of Longyearbyen (Photo: Dave Lowry)

Longyearbyen residents invited to contribute to biomethane project? Only joking. (Photo: Dave Lowry)

Longyearbyen residents invited to contribute to biomethane project? Only joking. (Photo: Dave Lowry)

The first sortie for Wednesday was a 0900 UTC departure aimed at surveying the hydrate bubble line west of Prins Karls Forland where the water depth is approximately 400 m. This has been the focus of extensive acoustic and geophysical study by European groups over the past decade. Many methane bubble plumes have been observed rising from the sea bed, but these tend to dissolve or be oxidized as they rise in the water column and their breaching of the surface is still hotly debated, hence our current atmospheric surveys. The data from the profiles across this zone will now be analysed to see if there is elevated methane, although first impressions are that this is not a very big source in the context of global methane emissions. Frequent sightings of whales and seals were reported back from the flight deck, but from my seat under the wing these went mostly unobserved. A low level (1000 ft) return to Lonyearbyen allowed some great views of the coastal scenery including mountains, glaciers and wetlands.

Southern tip of Prins Karls Forland (Photo: Dave Lowry)

Southern tip of Prins Karls Forland (Photo: Dave Lowry)

Thawing Svalbard wetland (Photo: Dave Lowry)

Thawing Svalbard wetland (Photo: Dave Lowry)

Another hour was spent over the bubble zone after lunch and refuel before climbing to 25,000 ft for the return transit to Kiruna. Spectacular views of the Norwegian coast were a distraction from watching the methane displays until the start of the descent into Kiruna. A plume of long-range transport of emitted methane was observed and sampled between 20,000 and 18,000 ft, and the air mass history will be analysed to interpret the source of this. We landed in Kiruna at 1700 UTC. We had flown around 13 hours in the 2 days and I had collected close to 50 samples of air for subsequent analysis back at Royal Holloway, University of London. So lots of tired crew and scientists but a very rewarding and informative trip. Hope to see a little more of the midnight sun if I get another opportunity to go up there.

Dr Dave Lowry (Royal Holloway, University of London)

Tuesday 1 July

Sea ice north of Svalbard, where we were looking for evidence of methane release. (Photo: John Pyle)

Sea ice north of Svalbard, where we were looking for evidence of methane release. (Photo: John Pyle)

We made it to 84N and did some really good science en route. The second radar altimeter (without which extended flying below 100ft is impossible) was playing up on the ground in Kiruna so I was nervous that we would not be able to do any of the low level work that we’d planned. In the event, it righted itself en route and we were able to fly down to 50ft over the ocean off Svalbard, including flight round the Norwegian research vessel of our MOCA (one of the other projects working on this field campaign) colleagues.

The afternoon flight took us to 84N, a record for FAAM, with a low level return over ice, mixed ice and open ocean to Svalbard. We have got excellent methane data to investigate whether the ocean is a methane source at the edge of the sea ice. It was an exciting flight, if a little too much for Stéph (see photo).

Professor John Pyle, University of Cambridge

An exhausting day, getting up to 84N.

An exhausting day, getting up to 84N. (Photo: John Pyle)

It’s been a busy few days to start the MAGIC/MAMM field work, and I haven’t had a chance to write a blog about it, except the prelude in my previous post. We did have a successful flight over wetlands yesterday, and i managed to get a few good photos out of the window. So for now, here’s a couple of pictures to whet your appetite, and a link to a video so you can see the kind of land we flew over.

//

Link to a video clip from the flight by Michelle Cain.
The shadow of the research aircraft on the summertime Arctic landscape. (Photo: Michelle Cain)

The shadow of the research aircraft on the summertime Arctic landscape. (Photo: Michelle Cain)

Flying over a lake in FInland. (Photo: Michelle Cain)

Flying over a lake in FInland. (Photo: Michelle Cain)